Chemicals and COVID-19, Part Two

A few months ago I wrote a post summarizing some of what was then known about the chemical connection to COVID-19. I talked about the link between the disease (cases, hospitalizations, and deaths) and fine particulate matter in the air. I also mentioned chemical connections to some of the risk factors like asthma and heart disease. Some new, potentially important information has come to light since then, so it’s time for an update.

Forever Chemicals

The most significant new information concerns compounds that have come to be known as “forever chemicals” because they’re so persistent. These chemicals are in a class once known as PFCs (perfluorinated chemicals) and now generally called PFAS (per- and polyfluoroalkyl substances). PFAS are currently in the spotlight, due at least in part, I believe, to the excellent movie Dark Waters, which brought them into the public consciousness. 

PFAS have already been linked to a wide range of negative health effects, but it appears we can add something new to the list. They may make COVID-19 worse.  A very recent study, still undergoing peer review, found that people infected with coronavirus who had elevated levels of one particular PFAS chemical had more than twice the risk of experiencing severe illness. What’s especially disturbing is that the particular substance, PFBA (aren’t these acronyms fun?), has been promoted as being safer than others in the class because it leaves the bloodstream more rapidly. Unfortunately, it accumulates in the lungs, which may explain the finding.

The Harvard researcher who found the connection also worries about something else. Previous research has found that people exposed to PFAS had reduced antibody concentrations after receiving tetanus and diphtheria vaccinations. In other words, the chemicals apparently reduced vaccine effectiveness. Will the chemicals also interfere with a COVID vaccine? As he notes, “At this stage we don’t know if it will impact a corona vaccination, but it’s a risk. We would have to cross our fingers and hope for the best.”

Unfortunately, PFAS are even harder to avoid than we previously thought. They’re handy for making things non-stick and waterproof, so an obvious place to start lowering your load is by avoiding products with those sorts of coatings. Seven years ago, when they were still called PFCs, I wrote a post noting that “it seems ironic that PFCs are generally used for their anti-stick properties given the fact that they’re very ‘sticky’ and persistent in the environment and in our bodies.”

Avoiding obviously non-stick products isn’t enough, though. A group of researchers recently attempted to determine just how widespread the use of PFAS has become, and said this: “What we found is deeply disturbing. PFAS are used in almost all industry branches and in a much wider range of consumer products than we expected. Altogether, we found PFAS in more than 200 use categories.” They note that some uses were already known, such as in fast-food containers, carpets, waterproof fabrics, ski waxes, batteries, muffin tins, popcorn bags, dental floss, and fire-fighting foams, but that many weren’t. They found the chemicals in hand sanitizers, mobile phones, a wide variety of cosmetic products, artificial turf, guitar strings, piano keys, pesticides, printer ink, and many more surprising places. PFAS frequently show up in the water supply, and have also been found in food as diverse as meat, leafy greens, and chocolate cake with icing.

Gas Appliances

As I noted in my previous post, the state of the air we breathe (particularly the amount of particulate matter in it) has been linked to the number and severity of COVID cases. Now it appears that long-term exposure to high NO2 (Nitrogen Dioxide) is more dangerous than exposure to particulate matter or ozone and correlates with a higher risk of death from the disease. An article reporting on the finding notes that NO2 is a primary pollutant produced by natural gas-burning stoves and furnaces.

Cleaners and Disinfectants

Last month I wrote an entire post on disinfectants, so I won’t repeat it all here, but I’ll point out that we now know much more clearly than we did at the beginning of the pandemic how the virus spreads, and that knowledge changes the risk/benefit equation of using disinfectant chemicals.  A New York Times article published after I wrote my post was aptly headlined:  “The Coronavirus Is Airborne Indoors. Why Are We Still Scrubbing Surfaces?” It points out that “disinfecting sprays are often made from toxic chemicals that can significantly affect indoor air quality and human health.”

A recent piece in the Washington Post makes the same point and notes that there’s not a single documented case of COVID-19 being transmitted through a contaminated surface. The authors (three professors) give the analogy of cleaning countertops and doorknobs to try to protect yourself from the effects of cigarette smoke in the air. They add that “the use of all of these extra cleaning products releases chemicals into the air that can be harmful to our health.”

Long-haulers

A growing number of “long-haulers” who have persistent symptoms after being infected with the virus are reporting increased sensitivity to everyday chemicals. Many of us with MCS (Multiple Chemical Sensitivity) find familiarity in the story.  All people alive carry a load of manmade and biological toxins inside, and when the load gets too high, sometimes the body turns on a warning system to keep us from being injured further. 

An article headlined “Why Are COVID-19 Long-Haulers Developing Fragrance Allergies?” points out that the main way to cope is to avoid triggers, but acknowledges that it’s difficult to do. Indeed it is. Let’s help ourselves and each other by being very intentional about the products we buy and use.